
psychometrika—vol. 83, no. 1, 21–47
March 2018
https://doi.org/10.1007/s11336-017-9568-7

SIMULTANEOUS COMPONENT ANALYSIS BY MEANS OF TUCKER3
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Anewmodel for simultaneous component analysis (SCA) is introduced that contains the existing SCA
models with common loading matrix as special cases. The new SCA-T3model is a multi-set generalization
of the Tucker3 model for component analysis of three-way data. For each mode (observational units,
variables, sets) a different number of components can be chosen and the obtained solution can be rotated
without loss of fit to facilitate interpretation. SCA-T3 can be fitted on centered multi-set data and also on
the corresponding covariance matrices. For this purpose, alternating least squares algorithms are derived.
SCA-T3 is evaluated in a simulation study, and its practical merits are demonstrated for several benchmark
datasets.
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1. Introduction

Simultaneous component analysis (SCA) aims to summarize observed (centered) scores of
variables in samples of several subpopulations into a small number of components for each
sample. Such data are also known as multi-set data, where each set consists of observations of
the same variables in a sample from one subpopulation. When no constraints are imposed in the
SCA problem, the best summary in terms of explained variance is given by principal component
analysis (PCA) for each sample separately. To facilitate the comparison of the components found
for each subpopulation, several constraints have been proposed for SCA. Imposing the component
weights matrices to be congruent (i.e., columnwise proportional) guarantees equal definitions of
the components as linear combinations of the observed variables for each subpopulation. This
method is referred to as SCA-W. Alternatively, one may impose that the structure matrices are
congruent (SCA-S) to establish equal interpretation of the components across subpopulations.
Yet another possibility is to impose pattern congruence (SCA-P) to obtain proportional regression
weights for optimally reconstructing the variables from the components. Relations between SCA-
W,SCA-S, andSCA-P are discussed inKiers andTenBerge (1994). The authors show that SCA-W
always has largest explained variance, followed by SCA-P, and then SCA-S. A disadvantage of
SCA-W is that it discriminates poorly between subpopulations with clearly different correlation
structures. Conversely, there can be a large gap in explained variance between doing separate
PCAs and SCA-S when correlation structures are very similar in subpopulations. Hence, not one
method of SCA seems to be preferred in all cases.

Working within the framework of SCA-P, Timmerman and Kiers (2003) consider three other
variants of SCA. The SCA-PF2 model is based on the multi-set Parafac2 model (Harshman,
1972) and is equal to SCA-P with identical component correlations across subpopulations. The
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SCA-IND model is equal to SCA-PF2 with uncorrelated components in all subpopulations. The
SCA-ECP model is a constrained version of SCA-PF2 with identical component variances across
subpopulations. Timmerman and Kiers (2003) apply these four SCA models to a 20-item mood
test administered to 12 individuals diagnosed with Parkinson’s disease at a number of consecutive
days that differs per subject. Here, themulti-set data is organized as days-by-items for each patient,
and each sample or set now corresponds to one patient.

In this paper, we introduce a new SCAmodel that is a multi-set generalization of the Tucker3
model for component analysis of three-way data (Tucker, 1966;Kroonenberg, 2008).We name our
model SCA-T3. The relation between SCA-T3 and Tucker3 is analogous to the relation between
Parafac2 and the Parafac models for three-way data (Harshman, 1970; Carroll & Chang, 1970):
The component score matrix is replaced by component score matrices for each subpopulation.
Contrary to Parafac and Parafac2, a Tucker3 solution is not rotationally unique and rotations
can be applied to obtain an interpretable solution. The same holds for SCA-T3. Also, different
numbers of components can be chosen for the observational units, variables, and subpopulations.
For Parafac and Parafac2 the number of components is the same for all three modes of the data.
SCA-T3 contains SCA-P, SCA-PF2, SCA-IND, and SCA-ECP as special cases. Hence, the SCA-
T3 model is more general and more versatile than the existing SCA models within the SCA-P
framework. Its added value will be shown in applications to several datasets in the literature.

This paper is organized as follows: In Sect. 2 we give a formal presentation of the existing
SCA models and our SCA-T3 model. This is preceded by a formal introduction of Parafac and
Tucker3 and related concepts. In Sect. 3 we derive an alternating least squares (ALS) algorithm
to fit SCA-T3. We also propose a novel method to fit the SCA models on observed covariance
matrices.We discuss how to compute variousmeasures of explained variance for the SCAmodels,
and how an SCA-T3 solution may be rotated to obtain a convenient interpretation. In Sect. 4 the
SCA-T3 model and algorithms are evaluated in a Monte Carlo simulation study. In Sect. 5 we fit
SCA-T3 to several datasets in the literature and compare the solutions to those of existing SCA
models. Finally, in Sect. 6 we present a discussion of our findings.

We use the following notation: Y , Y, y, y are used for a three-way array, a matrix, a column
vector, and a scalar, respectively. All arrays, matrices, vectors, and scalars are real-valued. Matrix
transpose and inverse are denoted as YT and Y−1, respectively. An zero matrix of size p × q is
denoted byOp,q . An zero column vector is denoted by 0. A p× p matrixY is called orthonormal
if YTY = YYT = Ip. A p × q matrix has orthogonal columns if YTY is diagonal. The diagonal
matrix containing entries of vector y as its diagonal is denoted as diag(y). The matrix Frobenius
norm ‖Y‖ is defined as trace(YTY)1/2.

2. Parafac, Tucker3, and the SCA Models

InSect. 2.1webrieflydiscuss theParafac andTucker3models and related concepts concerning
three-way arrays. In Sect. 2.2 we give formal definitions of the four SCA models considered in
Timmerman and Kiers (2003), and of our new SCA-T3 model. We show that SCA-T3 contains
the four existing SCA models as special cases.

2.1. Parafac and Tucker3 and Related Concepts

Let a sample of N observed scores on J variables for K conditions or occasions be collected in
the N× J×K three-way arrayX with N× J slicesXk for k = 1, . . . , K . For component analysis
ofX commonly twomodels are usedwhich both are related to principal component analysis (PCA)
or the singular value decomposition (SVD) for matrices. The first model we discuss is known as
Parafac or Candecomp (Harshman, 1970; Carroll & Chang, 1970) and modelsXk (after centering
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and possibly normalizingX ) asACk BT , whereA is an N × R matrix of component scores,Ck is
an R × R diagonal matrix, and B is a J × R loading matrix. Hence, centered observations Xk are
explained by scores on R common components and a common loading matrix, where the strength
or variance of the components may be different for different k. Parafac is fitted by minimizing∑K

k=1 ‖Xk −ACk BT ‖2, which shows its link with PCA. Indeed, for K = 1 the PCA solution is
obtained.

Let K × R matrix C contain the diagonal of Ck as its kth row. Parafac can be written as

X ≈
R∑

r=1

(ar ◦ br ◦ cr ), (1)

with ar , br , and cr denoting the r th columns of A, B, and C, respectively, and ◦ denoting the
outer vector product. That is, the N × J × K outer product array (ar ◦ br ◦ cr ) has entry (i, j, k)
equal to air b jr ckr . The three-way form of Parafac (1) implies that X is approximated in least
squares sense by a sum of R three-way arrays that have rank 1 (i.e., outer vector product form).
The rank of a matrix X is defined as the smallest number of rank-1 matrices whose sum equals
X. Analogously, the rank of a three-way array X is defined as the smallest number of rank-1
arrays whose sum equals X . In this sense, fitting Parafac to X implies computing a best rank-R
approximation of X . For matrices, the solution is given by the truncated SVD (Eckart & Young,
1936), while for three-way arrays we need to fit Parafac. Various algorithms to fit Parafac are
available (e.g., Tomasi & Bro, 2006), of which the ALS algorithm is most often used. In Parafac
ALS each of A, B, and C is updated while keeping the other two fixed. This boils down to OLS
regression for each update. For example, the update of B is obtained from OLS regression in

⎡

⎢
⎣

X1
...

XK

⎤

⎥
⎦ ≈

⎡

⎢
⎣

AC1
...

ACK

⎤

⎥
⎦BT = (C � A)BT , (2)

where (C � A) = [c1 ⊗ a1 . . . cR ⊗ aR] denotes the columnwise Khatri–Rao product, with ⊗
denoting the Kronecker product.

Despite its analogous relation to PCA, there are two fundamental differences between Parafac
and PCA. First, unlike PCA a Parafac solution (A,B,C) is rotationally unique under mild con-
ditions (e.g., Domanov & De Lathauwer, 2013). And second, unlike PCA a best fitting Parafac
model may not exist. That is, a three-way array X may not have a best rank-R approximation. In
such cases several rank-1 terms become nearly linearly dependent and large in magnitude while
fitting Parafac (Stegeman, 2006; De Silva & Lim, 2008; Stegeman, 2014). Needless to say, this
phenomenon should be avoided when an interpretable solution is needed.

The second model for component analysis of a three-way array is Tucker3 (Tucker, 1966),
which is written analogous to (1) as

X ≈
P∑

p=1

Q∑

q=1

R∑

r=1

gpqr (ap ◦ bq ◦ cr ). (3)

We write a Tucker3 solution as (A,B,C,G), where A has size N × P , B has size J × Q, C
has size K × R, and G is the P × Q × R array (also known as core array) with entries gpqr .
Hence, X is approximated by rank-1 terms formed from all combinations of the columns of A,
B, and C, and each rank-1 term has a weight gpqr . The Tucker3 model for slice Xk is written as
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A
(∑R

r=1 ckr Gr

)
BT , where Gr is the r th P × Q slice of core array G. By comparing (1) and

(3) it can be seen that Parafac is a special case of Tucker3 with P = Q = R and gpqr = 0 unless

(p, q, r) = (r, r, r). Tucker3 is fitted by minimizing
∑K

k=1 ‖Xk − A
(∑R

r=1 ckr Gr

)
BT ‖2, and

an ALS algorithm has been derived in Kroonenberg and De Leeuw (1980). Other algorithms can
be found in De Lathauwer, DeMoor and Vandewalle (2000b), Savas and Lim (2010), and Ishteva,
Absil, Van Huffel and De Lathauwer (2011).

More insight in the Tucker3 model can be obtained by writing it as X ≈ (A,B,C) · G,
where the latter array has (i, j, k) entry equal to

∑P
p=1

∑Q
q=1

∑R
r=1 aipb jqckr gpqr . Analogous

to matrix multiplication, we have (A,B,C) · G = (AS,BT,CU) · ((S−1,T−1,U−1) · G) for
nonsingular matrices S, T, and U. This shows that a Tucker3 solution is not rotationally unique.
In fact, we may assume without loss of generality that A, B, and C are columnwise orthonormal.
The rotational nonuniqueness may be exploited by trying to find orthogonal or oblique rotations
that rotate the core G (and possible also B and/or C) to simple structure (i.e., with only few large
nonzero entries). This facilitates interpretation of the Tucker3 solution, analogous to rotating
principal components. Rotation methods for this purpose have been developed by Kiers (1998a,
1998b) and will be discussed in relation to SCA-T3 in Sect. 3.

For later use,wemention that Tucker3 can bewritten as [X1 . . . XK ]≈A [G1 . . . GR](CT ⊗
BT ). By vectorizing the matrices (i.e., stacking the columns on top of each other) on both sides
we obtain

Vec([X1 . . .XK ]) ≈ (C ⊗ B ⊗ A)Vec([G1 . . .GR]), (4)

which can be used to obtain the update of G for fixed A,B,C in the Tucker3 ALS algorithm.
When A, B, and C are columnwise orthonormal, the OLS regression in (4) features orthonormal
predictors, and the explained variance due to each predictor adds up to the total explained variance.
This will be elaborated in relation to SCA-T3 in Sect. 3. Note that an optimal solution for Tucker3
is guaranteed to exist, since it is found by varying columnwise orthonormal A, B, and C, which
implies a compact feasible set (see also De Lathauwer, De Moor & Vandewalle, 2000b). The
updated core G can be written in terms of A, B, and C, as implied by (4).

Finally, we discuss the link between Tucker3 and the matrix SVD. Let a mode-i fiber of X
be defined as a vector obtained from X by varying index i and keeping the other two indices
fixed. That is, a mode-1 fiber is a column of some Xk , a mode-2 fiber is a row of some Xk , and a
mode-3 fiber is a vector (xi j1, . . . , xi j K )T for fixed row i and column j indices.When Tucker3 fits
perfectly, the linear spaces of mode-1, mode-2, and mode-3 fibers are given by the column spaces
of A, B, and C, respectively. This is analogous to the matrix SVD, which describes the row and
column spaces of a matrix. A crucial difference with matrices is, however, that a three-way array
may have different ranks for the three fiber spaces. Moreover, these may be different from the
rank of the three-way array as defined above. In contrast, a matrix has row rank equal to column
rank equal to its rank. More details on the link between Tucker3 and the SVD can be found in De
Lathauwer, De Moor and Vandewalle (2000a).

Numerous applications of Parafac, Tucker3, and related models exist. The reader is referred
to the following books and overview papers: Smilde, Bro and Geladi (2004), Kroonenberg (2008),
Kolda and Bader (2009), Acar andYener (2009), Comon andDe Lathauwer (2010), De Lathauwer
(2010).

2.2. Formal Definition of the SCA Models

Let the observed scores on J variables for sample k be collected in the Nk × J matrix Xk ,
k = 1, . . . , K . We assume that the columns of Xk are centered, so that Cov(Xk) = N−1

k XT
k Xk .
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Table 1.
Formal definitions of five SCA models.

SCA model Model for Xk Model for Cov(Xk) Cov(Ak)

SCA-P Ak BT B�k BT �k
SCA-PF2 Ak Ck BT BCk �Ck BT �

SCA-IND Ak Ck BT BC2
k B

T IR
SCA-ECP Ak BT B�BT �

SCA-T3 Ak

(∑R
r=1 ckr Gr

)
BT B

(∑R
r=1 ckr G

T
r

)
�

(∑R
r=1 ckr Gr

)
BT �

Table1 contains the formal definitions of the SCA models for both the observed scores Xk and
the observed covariance matrices.

First, we discuss the four existing SCA models. Each model is of the form Xk ≈ Fk BT ,
where Nk × R matrix Fk contains component scores for sample k and J × R matrix B is the
common loading matrix. The SCA models are fitted by minimizing

∑K
k=1 ‖Xk − Fk BT ‖2. The

component scores Fk are linear combinations of the observed scores Xk , and hence, we have
Cov(Fk) = N−1

k FT
k Fk . As model for Cov(Xk) we obtain BCov(Fk)BT . The SCA models differ

in their assumptions for Fk .
In SCA-P these are all assumptions and the component covariance matrices Cov(Fk) = �k

are unconstrained for each sample k. In SCA-PF2 we have Fk = Ak Ck , with N−1
k AT

k Ak = �

not depending on k and Ck an R × R diagonal matrix. Without loss of generality we may assume
that the columns of Ak have sum of squares equal to Nk (i.e., they have variance one). Hence, in
SCA-PF2 Cov(Fk) = Ck �Ck and the component correlations in � are equal for all k, but their
variances inC2

k may differ for each k. In SCA-INDwe have the same model as SCA-PF2 with the
additional restriction that the components are uncorrelated in each sample: � = IR . SCA-ECP
is the same model as SCA-PF2 with the additional restriction that Ck = IR . Hence, in SCA-ECP
the component variances and correlations are equal for all samples. In SCA-ECP we may impose
� = IR without loss of generality, and hence, the model is a constrained version of SCA-IND
(Timmerman & Kiers, 2003).

The SCA-PF2 model for Xk is equal to Parafac2 (Harshman, 1972) and equal to Parafac
whenAk = A; see Sect. 2.1. Solutions of SCA-PF2 and SCA-IND are usually rotationally unique
for K ≥ 4, with permutation and scaling being the only ambiguities in the solution (Ten Berge &
Kiers, 1996; Kiers, Ten Berge & Bro, 1999). Solutions of SCA-P and SCA-ECP can be rotated to
obtain an interpretable loading matrix B, analogous to rotating principal components. It is known
that Parafac2 is not unique for K = 2 (Ten Berge & Kiers, 1996), which makes application of
SCA-PF2 and SCA-IND problematic for two samples. Indeed, this type of nonuniqueness is not
fixed by applying a rotation.

Next, we introduce the new SCA-T3 model. SCA-T3 is related to the Tucker3 model
(Sect. 2.1) in the same way Parafac2 is related to Parafac. Namely, SCA-T3 is obtained from
Tucker3 by replacing A by Ak of size Nk × P and imposing the constraint N−1

k AT
k Ak = �.

In SCA-T3 the component covariance matrix Cov(Fk) has Tucker3 structure. The four existing
SCA models are special cases of SCA-T3. For SCA-PF2 this follows from the fact that Parafac
is a special case of Tucker3 (Sect. 2.1). Indeed, when setting P = Q = R and (Gr )pq = 0 for
(p, q) �= (r, r), r = 1, . . . , R, in SCA-T3 we obtain SCA-PF2. Since SCA-IND and SCA-ECP
are special cases of SCA-PF2, they are also special cases of SCA-T3. Also SCA-P is a special
case of SCA-T3. Let P = Q and R = K andC = IK . Then the SCA-T3 model forXk reduces to
AkGkBT , withGk of size P× P . Clearly, we can absorbGk intoAk and obtain the SCA-P model.
We conclude that SCA-T3 contains the four existing SCA models in Table1 as special cases.
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Note that in practical applications the fact that, formally, SCA-T3 includes SCA-P as a special
case is of little significance. Indeed, one would be interested in comparing the fit of different SCA
models with the same number of components in the variables mode (R for the existing SCA
models, Q for SCA-T3) and setting R = K in SCA-T3 is usually not of practical interest. In fact,
formally, SCA-T3 with P = Q = R < K is a special case of SCA-P.

The main differences between SCA-T3 and the four other SCA models are the following. In
SCA-T3 we are allowed to choose different numbers of components in the three modes of the
data. Indeed, matrices Ak contain component scores of P components, while loading matrix B
contains loadings of J variables on Q components, and C contains weights for K samples on R
components. The components in the three modes are linked via the entries of the core array G.
Analogous to Tucker3 the core array can be rotated without loss of fit to obtain a solution in which
only few entries of G are large, which will be elaborated in Sect. 3. This makes interpretation of
the solution much easier, a feature shared with SCA-P and SCA-ECP. However, SCA-T3 offers
more insight into differences between samples than SCA-P and SCA-ECP. Indeed, SCA-ECP
yields the same covariance model for all samples, while in SCA-P correlated components may
complicate interpretation (Timmerman & Kiers, 2003). Interpretation of an SCA-T3 solution
will be illustrated in applications in Sect. 5. A potential problem of SCA-PF2 is that so-called
diverging solutions may occur while trying to fit the model to multi-set data. In that case no
optimal solution exists and some columns of Ak , B, and C become nearly linearly dependent
and their norm increases without bound. Such cases have been observed in simulation studies
(Stegeman & Lam, 2016) and also occur for Parafac (Sect. 2.1). In Tucker3 and SCA-T3 there
always exists an optimal solution.

Note that from the Parafac and Parafac2 names onemay expect SCA-T3 to be named Tucker2
instead of Tucker3. However, Tucker2 is an existing special case of Tucker3 in which the number
of components equals the size of the three-way array in one mode and the component matrix for
that mode is set to identity (e.g., R = K and C = IK ). Therefore, we have chosen to name our
model SCA-T3 instead.

3. Fitting the SCA Models

Algorithms to fit the four existing SCA models in Table1 to observed (and centered) Xk

are the following. SCA-P is solved via PCA on [XT
1 , . . . ,XT

K ]T (Kiers & Ten Berge, 1994). For
SCA-PF2 an ALS algorithm is derived in Kiers et al. (1999). As shown in Timmerman and Kiers
(2003) the ALS algorithm for SCA-PF2 can be adapted easily to SCA-IND and SCA-ECP. In
Sect. 3.1 we derive an ALS algorithm for SCA-T3 analogous to the algorithm for SCA-PF2. In
Sect. 3.2 we propose a new method to fit the SCAmodels to observed Cov(Xk), k = 1, . . . , K . In
Sect. 3.3 we discuss rotation methods for SCA-T3. In Sect. 3.4 we discuss how to compute various
measures of explained variance in SCA-T3 and the exisiting SCAmodels. Finally, in Sect. 3.5 we
discuss how a suitable SCA model may be selected for a particular dataset.

3.1. ALS Algorithm for SCA-T3

To fit SCA-T3 we minimize
∑

k ‖Xk − Ak

(∑R
r=1 ckr Gr

)
BT ‖2 over Ak , B, C, and the

core G. Recall that N−1
k AT

k Ak = � does not depend on k. We assume that rank(Ak) = P
for k = 1, . . . , K . Then we can set N−1

k AT
k Ak = IP without loss of generality. Indeed, for

� = VTV we can replace Ak by Ak = AkV−1 and each Gr by Gr = VGr to obtain a solution

with N−1
k A

T
k Ak = IP . Wemay also setBTB = IQ without loss of generality, as will be explained

below. Note that when rank(B) < Q or rank(C) < R the SCA-T3 model can be reduced to a
model with less components without loss of fit (as for Tucker3).
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Analogous to theALSalgorithm for SCA-PF2 inKiers et al. (1999)we alternatinglyminimize
the objective function overAk , k = 1, . . . , K , for fixedB,C, G, and overB,C, and G for fixedAk ,

k = 1, . . . , K . We need to reparameterize the model as Ãk

(∑R
r=1 c̃kr Gr

)
BT , k = 1, . . . , K ,

with ÃT
k Ãk = IP . After convergence we obtain Ak and C from Ãk and C̃, respectively, by

rescaling. The two main steps of the algorithm are as follows.

Step 1. Minimizing the objective function over Ãk subject to ÃT
k Ãk = IP is equivalent

to minimizing ‖Xk B
(∑R

r=1 c̃kr G
T
r

)
− Ãk‖2 over Ãk , since the only term depending on

Ãk is the same in the expansion of both objective functions. The solution is found by

computing the singular value decomposition Pk�kQT
k ofXk B

(∑R
r=1 c̃kr G

T
r

)
(Nk × P),

and Ãk = PkQT
k is the optimal solution, k = 1, . . . , K (Golub & Van Loan, 1996,

Sect. 12.4).
Step 2. The problem of minimizing the objective function over B, C̃ and G reduces to

minimizing
∑

k ‖ÃT
k Xk −

(∑R
r=1 c̃kr Gr

)
BT ‖2, since the terms depending on B, C̃ and

G are identical in the expansion of both objective functions when ÃT
k Ãk = IP . The latter

objective is equivalent to fitting the Tucker2 model with (P, Q, R) components to the
P × J × K array with P × J slices ÃT

k Xk , k = 1, . . . , K . We apply one iteration of the
Tucker2 ALS algorithm (Kroonenberg & De Leeuw, 1980) to update each of B, C̃ and G.
Analogous to Tucker3 we takeB and C̃ columnwise orthonormal without loss of generality
(Sect. 2.1).

The ALS procedure above guarantees monotonic convergence of the SCA-T3 objective function.
We stop the ALS algorithmwhen the relative decrease in the objective function drops below 10−7.
After convergence we set Ak = N 1/2

k Ãk and ckr = N−1/2
k c̃kr to obtain a valid SCA-T3 solution.

Note that C will not be columnwise orthogonal unless the Nk are equal for all k.
We can choose between using random or rational starting values. As random starting values

we obtain Ãk , B, and C̃ as orthonormal bases of the column spaces of matrices with entries
randomly sampled from the standard normal distribution. The starting core G is then found via
the update in the Tucker2 ALS algorithm. As rational starting values we obtain Ãk via PCA on
Xk . After the P × J × K array with slices ÃT

k Xk is constructed, starting B and C̃ are likewise
obtained via PCA on corresponding matrix unfoldings of the array. Finally, the starting core G
is again computed via the update in the Tucker2 ALS algorithm. Since the objective function is
not convex, the ALS algorithm may terminate in a local minimum. A common remedy is to run
the algorithm multiple times with different starting values. In the simulation study in Sect. 4 we
determine the number of runs needed for SCA-T3 models of various sizes.

3.2. Fitting SCA Models to Observed Covariance Matrices

When only observed covariance matrices are available, can the SCA models in Table1 be
fitted in their covariance form? Below we propose a new heuristic method for this purpose. First
we discuss SCA-P. Let Xall = [XT

1 . . .XT
K ]T be rescaled such that its columns have equal sum

of squares
∑

k Nk (as suggested by Timmerman & Kiers, 2003). We assume the same scaling for
Fall = [FT

1 . . .FT
K ]T . Recall that SCA-P minimizes

∑
k ‖Xk − Fk BT ‖2 without any constraints

on N−1
k FT

k Fk = �k . Let USVT be the SVD of (
∑

k Nk)
−1/2 Xall, with UTU = VTV = IJ

and S = diag(s1, s2, . . . , sJ ) containing the singular values in decreasing order. Let UR =
[UT

1,R . . .UT
K ,R]T consist of the first R columns of U, with block Uk,R having Nk rows. Let VR

consist of the first R columns ofV, and let SR = diag(s1, . . . , sR). The unrotated SCA-P solution
is given by Fk = (

∑
k Nk)

1/2 Uk,R and B = VR SR (Kiers & Ten Berge, 1994). This implies that
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(
K∑

k=1

Nk
∑

k Nk
Cov(Xk)

)

=
(

∑

k

Nk

)−1

XT
allXall = VS2 VT , (5)

has best rank-R approximation VR S2R V
T
R = BBT (Eckart & Young, 1936). Hence, when only

observed covariance matrices are available the optimal unrotated SCA-P loading matrix B can be
obtained from a PCA on the (rescaled) weighted sum of covariance matrices. Given this B, the
OLS estimates of the component covariance matrices can be obtained via Penrose regression as
�k = (BTB)−1BTCov(Xk)B(BTB)−1 (Penrose, 1956). Note that the weighted sum in (5) turns
into a regular sum when SCA-P is fitted to X̃k = N−1/2

k Xk and the normalization by (
∑

k Nk)

is ignored in the above. For the other SCA models PCA is not used to obtain a solution and it is
not clear how the minimizer B of

∑
k ‖Xk −Fk BT ‖2 should be obtained when only Cov(Xk) are

available.
Next, we consider minimizing

∑
k ‖Cov(Xk) − BCov(Fk)BT ‖2, where the model for

Cov(Fk) depends on the SCA model; see Table1. Kiers (1993) has proposed an algorithm to fit
SCA-PF2 to observed covariance matrices, but it is rather complicated and converges very slowly
(as stated inKiers et al., 1999). Also, the algorithmofKiers (1993) cannot be adapted to SCA-IND.
We propose a heuristicmethod to fit the SCAmodels to observed covariancematrices, by using the
ALS algorithms of the SCAmodels for observed scores. Our approach consists of two steps. First,
the eigenvalue decompositions of the observed covariancematricesCov(Xk) = VkDkVT

k are com-

puted. Second, we computeYk = D1/2
k VT

k so that Cov(Xk) = YT
k Yk and fit the SCAmodel toYk

(J× J ), k = 1, . . . , K . For example, for SCA-PF2we fitYk ≈ AkCkBT withAT
k Ak = �. Hence,

we do not use the normalization N−1
k here. The ALS algorithm for SCA-PF2 is easily adapted

to this purpose. It follows that Cov(Xk) = YT
k Yk ≈ BCk �Ck BT , with equality for perfect fit.

However, this procedure does not necessarily minimize
∑

k ‖Cov(Xk) − BCk�CkBT ‖2. Yet it
provides an elegant and relatively simple and fast algorithm to obtain a very good approximation
nonetheless. In Lam (2015) a simulation study with noise-free data is conducted to compare the
approach above to Kiers (1993) for SCA-PF2, and fitting the model as above yields more accurate
results. Variants of the approach above to fit SCAmodels to observed covariancematrices are used
in Stegeman and Lam (2014) for three-mode factor analysis and in Stegeman and Lam (2016) for
multi-set factor analysis. Apart from Kiers (1993) no special purpose algorithms are available to
fit the SCA models to observed covariance matrices. In the simulation study in Sect. 4 it will be
shown that fitting SCA-T3 as above yields accurate results for noisy multi-set data. Moreover, for
noise-free data following a unique SCA-T3 model (with imposed zeros in G; see Sect. 3.3) the
correct solution is retrieved.

3.3. Obtaining an Interpretable Solution for SCA-T3

In step 2 of the ALS algorithm for SCA-T3 (Sect. 3.1) a Tucker2 solution (IP ,B, C̃) · G is
obtained. After convergence this Tucker2 solution may be rotated analogous to Tucker3 solutions
to obtain an interpretable solution (Sect. 2.1). In particular, orthonormal matrices S (P × P),
T (Q × Q), and U (R × R) satisfy (S,BT, C̃U) · ((ST ,TT ,UT ) · G). After rotating we set
Ak = N 1/2

k ÃkS so that N−1
k AT

k Ak = IP still holds. Also, (BT)T (BT) = IQ , and (C̃U)T (C̃U) =
IR . The rotational freedom may be used to find rotation matrices such that the rotated core
(ST ,TT ,UT ) ·G and the rotated loading matrix BT (or perhaps also the rotated C̃U) have simple
structure, analogous to rotation methods for PCA. For this purpose, the joint orthomax rotation
method for Tucker3 ofKiers (1998b)may be used, inwhich theweighted objective of a simple core
and simple componentmatrices in the threemodes is obtained in the orthomax sense.A component
matrix may also be given weight zero, indicating that simple structure is not an objective for this
matrix. For SCA-T3 the weight of the first component matrix is zero, since this is the orthogonal
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rotation of the components Ak and does not need to be simple. Application of joint orthomax
involves specifying themodes to rotate and theweights for eachmode. For practical applications it
may be convenient to choose the natural weights proposed in Kiers (1998b) that take into account
the sizes of the core and the component matrices.

A different rotation method is Simplimax (Kiers, 1998a) that applies oblique rotations with
the aim of obtaining a simple core only. Simplimax can be used in two ways: Either the required
number m of nonzero core entries is specified in advance or the pattern of nonzero core entries
is specified. The Simplimax algorithm then finds oblique rotation matrices S,T,U such that the
rotated core has smallest sumof squares of the smallest PQR−m entries, or of the entries required
to be zero. Hence, this rotation method only yields a simple core and may result in oblique rotated
components ÃkS.

A third method to obtain an interpretable SCA-T3 solution is to impose zero restrictions
in the core G while fitting the SCA-T3 model. Such Tucker3 models arise naturally in several
applications in chemometrics (Smilde et al., 2004).ALS algorithms to fit such constrainedTucker3
models can be found in Rocci (1992) and Kiers and Smilde (1998). However, when imposing zero
restrictions in the core one should make sure the model is unique and nontrivial (Ten Berge &
Smilde, 2002). Indeed, if the model is not unique, then alternative component matrices and core
exist resulting in the same fitted model array, thus hampering unambiguous interpretation of the
model. Nontriviality means that the pattern of zeros in the core should not be possible to obtain
by rotating a general core of the same size. In that case the model would not truly be a model but
rather an artifact. See Ten Berge and Smilde (2002) for a discussion.

In the applications in Sect. 5 we only use the joint orthomax rotation method of Kiers (1998b)
and use natural weights to balance between a simple loading matrix B, a simple core array G, and
a simple weight matrix C̃ by rotating orthogonally in all three modes.

After orthogonal rotations have been applied in SCA-T3, we rescale the solution such that it
matches the scaling applied in Timmerman and Kiers (2003) for SCA-PF2. The SCA-PF2 model
can be written in matrix form as

⎡

⎢
⎣

A1 C1
...

AK CK

⎤

⎥
⎦ BT . (6)

In Timmerman and Kiers (2003) the matrix on the left-hand side has column sum of squares
equal to

∑
k Nk , which defines the scaling of the columns of C when each Ak has column sum of

squares equal to Nk . The scaling coefficients are then absorbed in B. Analogously, the SCA-T3
model can be written as

⎡

⎢
⎢
⎢
⎣

A1

(∑R
r=1 c1r Gr

)

...

AK

(∑R
r=1 cKr Gr

)

⎤

⎥
⎥
⎥
⎦

BT . (7)

We keep N−1
k AT

k Ak = IP and require that the matrix on the left-hand side of (7) has column
sum of squares equal to

∑
k Nk . This implies the scaling of the columns of B. Additionally,

we normalize the largest absolute entry in each Gr to one and apply the reverse normalization
to column r of C. This ensures that the entries in B and C are comparable in size to those in
SCA-PF2 when the scaling of Timmerman and Kiers (2003) is used.
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3.4. Computing Explained Variance Measures for the SCA Models

The SCAmodels are fitted to (centered) observed scoresXk byminimizing ‖Xall−Fall BT ‖2,
with Xall = [XT

1 . . .XT
K ]T , Fall = [FT

1 . . .FT
K ]T , and the model for Fk depending on the SCA

model (Table1). The update for B is obtained via OLS regression in all SCA algorithms. Since
regression and residual are orthogonal, it follows that the overall fit percentage can be expressed
as

100 − 100 × ‖Xall − Fall BT ‖2
‖Xall‖2 = 100 × ‖Fall BT ‖2

‖Xall‖2 . (8)

Although the fit is not maximized for each sample k separately, we can still compute the fit
percentage per sample to identify samples for which the model does not fit well. The following
lemma states that equality (8) holds analogously for each sample when SCA-P, SCA-PF2, SCA-
IND, or SCA-T3 are fitted. Its proof can be found in appendix.

Lemma 3.1. Let Xk be centered observed scores, k = 1, . . . , K. When SCA-P (via PCA), SCA-
PF2, SCA-IND, or SCA-T3 (via ALS) are fitted to Xk , k = 1, . . . , K, the fit percentage for
sample k can be computed as

100 − 100 × ‖Xk − Fk BT ‖2
‖Xk‖2 = 100 × ‖Fk BT ‖2

‖Xk‖2 . (9)

	

The rotations that are possible in SCA-P, SCA-ECP, and SCA-T3 leave the fitted model matrices
invariant. That is, rotating does not change the matrices Fall BT and Fk BT , k = 1, . . . , K . Hence,
these rotations do not change the fit percentages in (8) and (9).

Under SCA-IND the columns ofFall are orthogonal, sinceFT
allFall = ∑

k F
T
k Fk = ∑

k Nk C2
k .

The same is true for SCA-ECPwithCk = IR . (Recall that in SCA-ECPwe can set� = IR without
loss of generality.) Hence, for these models we can define the fit percentage due to component r
as

100 − 100 × ‖Xall − Fall,r bTr ‖2
‖Xall‖2 = 100 × ‖Fall,r bTr ‖2

‖Xall‖2 , (10)

where Fall,r denotes column r of Fall. Moreover, the fit percentages (10) for components r =
1, . . . , R sum up to the overall fit percentage (8).

For SCA-T3 we can compute the fit percentage due to each term (p, q, r) in the model, as
specified in the following lemma. Its proof can be found in appendix.

Lemma 3.2. Let Xk be centered observed scores, k = 1, . . . , K. When SCA-T3 (via ALS) is
fitted to Xk , k = 1, . . . , K, the fit percentage due to each term (p, q, r) can be computed as

100 − 100 × ‖Xall − Aall,p ckr gpqr bTq ‖2
‖Xall‖2 = 100 × ‖Aall,p ckr gpqr bTq ‖2

‖Xall‖2 , (11)

where Aall,p denotes column p of Aall = [AT
1 . . . AT

K ]T . Moreover, summing the fit percentages
(11) for all p, q, and r yields the overall fit percentage (8). 	
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Orthogonal rotation of the Tucker2 solution in step 2 of the SCA-T3 algorithm (Sect. 3.3) does
not change the columnwise orthonormality of the matrix in (18). Hence, the fit percentage due
to term (p, q, r) can be computed via (11) also after orthogonal rotation. The fit percentages
indicate which terms should be used to interpret the SCA-T3 solution. This provides a more
reliable measure for interpretation than considering “large” core entries only.

When the SCA models are fitted on observed covariance matrices and we use our
heuristic method explained in Sect. 3.2, we compute the fit percentages as follows: We have
Cov(Xk) = YT

k Yk and fit an SCA model as Yk ≈ Fk BT , where the form of Fk depends
on the SCA model (Table 1). The overall fit percentage (8) can be computed as 100 ·
(
∑

k trace(BFT
k Fk BT )/(

∑
k trace(Cov(Xk))). Analogously, the fit percentage (9) for sample k

equals 100 · (trace(BFT
k Fk BT )/(trace(Cov(Xk))). For SCA-T3 also the fit percentage due to

each term (p, q, r) can be computed analogous to (11).

3.5. SCA Model Selection

Since SCA-T3 adds a fifth andmore general model to the already existing four SCAmodels in
the SCA-P framework, onemaywonder how to select an appropriate SCAmodel and number(s) of
components for a given dataset at hand. For the four existing SCAmodels an excellent discussion
ofmodel selection is included inTimmerman andKiers (2003).Next,we summarize the guidelines
in this discussion and discuss model selection for the SCA-T3 model. In general, it is desirable
to choose the most constrained model with a relatively small number of components that fits the
data well and has a clear substantive interpretation. Apart from the fit percentage versus number
of components trade-off, issues of model stability are also important to take into account in model
selection. Model stability can be assessed via cross-validation and split-half analysis.

Cross-validation aims to assess the predictive validity of the estimated model. For the
SCA models Timmerman and Kiers (2003) advise to use the Expectation-Maximization cross-
validation (EM-CV) method of Louwerse, Smilde, and Kiers (1999). In EM-CV the complete
dataset Xk , k = 1, . . . , K , is split up into M about equal-sized parts, by randomly assigning each
observation to one of the M parts. Then the SCA model is fitted to the dataset while treating one
of the M parts as missing data in the EM framework. In the ALS algorithm the missing values are
replaced with model estimates after each iteration. After convergence the predictive error sum of
squares (PRESS) is computed as the sum of squares of the true missing data minus the estimated
missing data. This procedure is repeated for all M parts separately, and the final PRESS value
is the sum of the M individual PRESS values. As such, PRESS is used as an indicator of the
predictive accuracy of the model when a part of the data is left out. For more details on PRESS
we refer to Timmerman and Kiers (2003) and Louwerse et al. (1999). The EM-CV procedure
described above can also be used for SCA-T3. Since only the fitted model is needed in its entirety,
no rotations need to be applied.

In a split-half analysis the complete dataset is randomly split up into two about equal-sized
parts (same procedure as in EM-CV), after which the SCAmodel is fitted to both halves separately.
The obtained two sets of estimates can then be compared to assess model stability. Timmerman
and Kiers (2003) propose to use loading matrix B for this purpose and define the split-half
stability (SHS) coefficient as the mean absolute difference between the two estimates of B (after
appropriately permutating and sign changing their columns). The final SHS is then obtained as
the average of the SHS coefficients obtained from 50 random splits of the data. For SCA models
that do not yield a unique loading matrix estimate (up to permutation and scaling) such as SCA-P,
SCA-ECP, and SCA-T3, we need to decide how to compare the two estimates of B. For SCA-P
and SCA-ECP Timmerman andKiers (2003) propose to use Varimax rotation of the two estimated
loading matrices separately. For SCA-T3 we can apply joint orthomax rotation of Kiers (1998b)
to obtain a simple core and loading matrix in both estimated models separately. Alternatively,
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we can rotate one SCA-T3 solution to the other one by minimizing the criterion (15) as will be
explained in Sect. 4. Indeed, when only the subspace of the loading matrix is identified it makes
sense to use this measure for closeness of the two subspaces. Naturally, the same reasoning applies
to SCA-P and SCA-ECP.

For each SCA model and number(s) of components the PRESS and SHS values and the fit
percentage can be reported. Models with too large PRESS or SHS values are then discarded, using
a chosen threshold value that is specific for the dataset at hand. We are then left with various SCA
models of various sizes and their fit percentages. An appropriate SCA model may now be chosen
by considering the fit percentage and the interpretability of the solution. For SCA-T3 we need
to choose (R, P, Q) instead of just one number of components. For Tucker3 several methods
have been proposed for choosing (R, P, Q), an intuitive one being the convex hull method of
Ceulemans and Kiers (2006). Here, a graph is plotted of number of free parameters in the Tucker3
model versus fit percentage. Only the models on the convex hull of this graph are considered
as suitable, since they offer relatively the most fit with relatively the smallest number of model
parameters. For SCA-T3 thismethodmay also be used, after unstablemodels have been discarded.
The convex hull method is extended to the four existing (multilevel) SCA models in Ceulemans,
Timmerman and Kiers (2011). Note, however, that the convex hull method does not consider
interpretability of the solution. This may be a subjective reason to favor a model that is slightly
less stable than desirable or does not lie on the convex hull in the plot of parameters versus fit.

In an application in Sect. 5 it will be illustrated how the above criteria for model selection
can be balanced in practice.

4. Simulation Study

Weconduct aMonteCarlo simulation study to evaluate theSCA-T3model andALSalgorithm
with respect to the occurrence of local minima and the recovery of underlying true component
scores matricesAk , loading matrixB, weights matrixC, and core array G. In Sect. 4.1 we generate
noise-free SCA-T3 datasets and determine the number of runs with different (random) starting
values that are needed to find the global minimum. We consider both fitting SCA-T3 to observed
scores (using the ALS algorithm of Sect. 3.1) and to observed covariance matrices (using the
heuristic algorithm of Sect. 3.2). In Sect. 4.2 we generate noisy SCA-T3 datasets and focus on
recovery of the underlying true parameters.

4.1. Occurrence of Local Minima

We set J = 6, K = 5, N1 = 50, N2 = 100, N3 = 50, N4 = 150, and N5 = 250. True
matrices Ãk , B and C̃ are generated as orthonormal bases of matrices with entries randomly
sampled from the standard normal distribution. For these values of J , K , and Nk , we consider
two true core arrays: (P, Q, R) = (3, 3, 2) and

[G1 |G2] =
⎡

⎣
1.5 0 0 0 0 0
0 0 0 0 0 0.8
0 0 −1 0 0.6 0

⎤

⎦ , (12)

and (P, Q, R) = (3, 3, 1) and

G =
⎡

⎣
1.5 0 0
0 0.8 0
0 0 0.6

⎤

⎦ . (13)
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Table 2.
Number of runs m∗ per dataset and number of datasets with fit percentage less than 99.99, 99.9, and 99.0% for 100
generated SCA-T3 noise-free datasets.

K Core Data m∗ Best of m∗ runs Best of m∗/2 runs Rational start

K = 5 (12) Scores 20 2, 1, 0 11, 10, 0 71, 60, 10
K = 5 (13) Scores 1 0, 0, 0 – 0, 0, 0
K = 2 (13) Scores 1 0, 0, 0 – 0, 0, 0
K = 12 (14) Scores 350 5, 0, 0 19, 3, 0 96, 87, 8
K = 5 (12) Cov 30 1, 0, 0 14, 6, 1 77, 55, 9
K = 5 (13) Cov 1 0, 0, 0 – 0, 0, 0
K = 2 (13) Cov 1 0, 0, 0 – 0, 0, 0
K = 12 (14) Cov 340 4, 0, 0 18, 1, 0 94, 85, 6

The SCA-T3 model is either fitted on the observed scores or on the observed covariance matrices.

We also consider core (13) with K = 2 and J and Nk as above, since we use this model in the
simulation study in Sect. 4.2. Additionally, we consider the SCA-T3 model size of the application
in Sect. 5.1: J = 20, K = 12, Nk equal to 70, 53, 70, 69, 68, 70, 68, 69, 69, 70, 70, and 71,
(P, Q, R) = (4, 4, 3), and core G equal to

[G1 |G2 |G3] =

⎡

⎢
⎢
⎣

0 0.6 0 0.4 0 0 0.3 0.5 0.3 0 0 0
0.9 0 0 0 0 0.5 0.8 −0.3 0 0 0.3 0
0.3 0 0 1.0 −0.8 0 1.0 0 0 1.0 0 0
0 0 0.7 0 0 0.3 0 0 −0.4 0 0 0.3

⎤

⎥
⎥
⎦ . (14)

After true Ãk , B, C̃, and G have been generated, the scores data are constructed as Xk =
Ãk

(∑R
r=1 c̃kr Gr

)
BT , k = 1, . . . , K . For each model size we generate 100 noise-free datasets.

For each dataset we fit the SCA-T3 ALS model of Sect. 3.1 with convergence criterion 10−7, one
rationally started run and a large number of randomly started runs. For m ∈ {1, 10, 20, 30, . . .}
we determine the number of datasets hm for which the run with the highest fit percentage (8) has
fit at least 99.99%. Let m∗ be the smallestm for which hm ≥ 95. Hence, m∗ indicates the number
of runs that are needed to obtain a best solution with fit at least 99.99% for at least 95 out of 100
generated datasets. In Table2 the numbers of datasets with best run less than 99.99, 99.9, and
99.0% fit are reported when m∗ runs are used. For comparison we also report the frequencies for
half of m∗ runs and when only the rationally started run is used.

Next to fitting SCA-T3 to observed scores Xk , we also fit SCA-T3 to noise-free
Cov(Xk) using the heuristic algorithm of Sect. 3.2. The noise-free Cov(Xk) is given by

B
(∑R

r=1 c̃kr G
T
r

) (∑R
r=1 c̃kr Gr

)
BT . We consider the same true models as above.

The results are as follows (see Table2). For core (13) only the rationally started run is needed
to obtain a fit of 100%. For core (12) 20 or 30 runs are sufficient to obtain a best run with fit larger
than 99.99% for almost all datasets. For the larger model with core (14), however, a much larger
number of runs is needed. This is important to keep in mind when fitting SCA-T3. The rationally
started run is of not much use for cores (12) and (14), since for the vast majority of datasets it
yields fit less than 99.99%.

For the best runs with fit at least 99.99%we also compute themean absolute deviation (MAD)
between the estimated and true values of Ãall = [ÃT

1 . . . ÃT
K ]T , B, C̃, and G, where the estimates

are rotated toward their corresponding true values. This rotation procedure is described in detail
in Sect. 4.2. For core (13) fit at least 99.99% implies that all MAD values are below 10−15. For
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core (12) the average MAD(Ãall), MAD(B), MAD(C̃), and MAD(G) equal 0.02, 0.001, 0.006,
and 0.007, respectively. For core (14) the average MAD values are 0.02, 0.002, 0.003, and 0.01,
respectively. For fitting SCA-T3 to covariance matrices the average MAD values are even lower.
Hence, a fit close to 100% implies that the (rotated) estimated SCA-T3 solution is close to the
true solution.

4.2. Recovery of Model Parameters

We consider the same true models as in Sect. 4.1, and the scores data are now gener-

ated as Xk = X(model)
k + σk Ek , with X(model)

k = Ãk

(∑R
r=1 c̃kr Gr

)
BT and the entries of Ek

randomly sampled from the standard normal distribution. The noise strength σk is defined as
σk = sk ‖X(model)

k ‖/(J Nk)
1/2 such that the expected sum of squares of the noise term equals

s2k ‖X(model)
k ‖2 [analogous to Kiers et al., (1999), who set sk = 0.5]. We consider two noise levels,

sk = 0.5 and sk = 0.7, that are equal for all samples k. Additionally, we consider unequal sk
by taking the first K values from the sequence 0.4, 0.6, 0.5, 0.7, 0.4, 0.4, 0.6, 0.5, 0.7, 0.4, 0.6,
0.6. For each true model we generate 100 noise instances and fit SCA-T3 to the resulting Xk ,
k = 1, . . . , K , using the ALS algorithm of Sect. 3.1. For each dataset, the ALS algorithm is run
m∗ − 1 times with random starting values and one time with rationally chosen starting values,
with the number of runs m∗ taken from Table2 with the following exceptions: for core (13) we
usem∗ = 10, and for core (14) we usem∗ = 50. The estimates of the run with the best fit are kept.
Using only the rational start for core (13) while having noisy data does not make much sense.
On the other hand, using 350 runs for core (14) did not improve the recovery results (up to two
decimals) compared to using 50 runs per dataset.

After estimates Âall = [ÂT
1 . . . ÂT

K ]T , B̂, Ĉ, and Ĝ have been obtained, we apply orthogonal
rotations S, T, and U such that

‖Âall S − Ãall‖2 + ‖B̂ T − B‖2 + ‖Ĉ U − C̃‖2 +
R∑

h=1

‖ST
(

∑

r

urh Ĝr

)

T − Gh‖2, (15)

is minimal. Hence, the rotations minimize the sum of the norms of the differences between the
rotated estimates and the true Ãall,B, C̃, andG, respectively. This is achieved by iterating overS,T,
and U, where each update boils down to a Varimax rotation when the core is unfolded as a matrix
in the appropriate way. This method was also suggested in Kiers (2004). As starting rotations
for S, T and U we use the Varimax rotations of Âall to Ãall, B̂ to B and of Ĉ to C̃, respectively.
In the simulations below the minimization of (15) does not take more than 10 iterations in all
replications.

Note that analogous to SCA-PF2 the model SCA-T3 features a sign indeterminacy of each
row of C̃ separately. Indeed, we can multiply row k of C̃ by−1 and Ãk by−1 and obtain the same
fitted model. This sign indeterminacy is not taken into account in the rotations above. Therefore,
we consider all possible sign changes of the rows of Ĉ, compute theminimumof (15), and keep the
sign changed Ĉ with smallest value of (15). A discussion of this sign indeterminacy in SCA-PF2
can be found in Helwig (2013).

In the above it is implicitly assumed that for the SCA-T3 model without noise we can recover
the true Ãk , B, C̃, and G after rotating when the fit percentage is 100%. This has been verified
numerically for the chosen models above. This is not always true, however. For example, with
core (12) and K = 2 (and N1 = 50, N2 = 100) we obtain different Ãk , C̃, and G after rotating
even though we have perfect fit. With K = 2 and core (13) we do not have this problem. Note
that for K = 2 we cannot apply SCA-PF2 due to nonuniqueness, as mentioned in Sect. 2.2.
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The estimation accuracy is evaluated by means of the mean absolute deviation (MAD) and
root-mean-square error (RMSE), which are defined for estimate B̂ and true value B as

MAD(B) = (J Q)−1
J∑

j=1

Q∑

q=1

|b jq − b̂ jq |, RMSE(B) =
⎛

⎝(J Q)−1
J∑

j=1

Q∑

q=1

(b jq − b̂ jq)
2

⎞

⎠

1/2

.

(16)

The MAD and RMSE for C̃ and G are defined analogously, where G is first unfolded as a matrix.
In Table3 the results are presented. As can be seen, the recovery is very good for all estimates

and models when the noise strength is sk = 0.5. As expected, for sk = 0.7 the recovery is less
accurate. For unequal sk the recovery is mostly less accurate when compared to sk = 0.5, but
more accurate when compared to sk = 0.7. When comparing the results for different true models,
it can be seen that recovery of B is best for core (14), second best for core (12), and worst (but
still very good) for core (13). Recovery of C̃ and G is best for core (13), second best for core (14),
and worst (but still good for C̃) for core (12). Recovery of Ãall is best for core (13), second best
for core (12), and worst for core (14). In general, recovery of G seems to be most difficult. This
is probably due to the zeros imposed in the true cores. It may be surprising that the largest model
with core (14) has better recovery results for B, C̃, and G than the model with core (12). However,
the larger value of K = 12 may contribute to more stable estimation results.

Next, we generate multi-set data from true covariance matrices and use the heuristic method
described in Sect. 3.2 to estimate B, C̃, and G. The data for sample k are generated as Xk =
Zk (�k)

1/2, whereZk is an Nk× J matrixwith entries randomly sampled from the standard normal
distribution, and �k is the true covariance matrix under SCA-T3. The algorithm of Sect. 3.2 is
then applied to Cov(Xk), k = 1, . . . , K . After estimation, rotations to the true B, C̃, and G are
applied such that the criterion

‖B̂ T − B‖2 + ‖Ĉ U − C̃‖2 +
R∑

h=1

‖ST
(

∑

r

urh Ĝr

)

T − Gh‖2, (17)

is minimized. Note that Ãall does not appear in the covariance model of SCA-T3.
We use the same true models as in Sect. 4.1, and the number of randomly started runs is taken

as above. It was verified numerically that for Cov(Xk) = �k the true B, C̃, and G are recovered
when the fit is 100%. The results are given in Table3. As can be seen, recovery is very good
for all estimates and models. Compared to scores data with noise strength sk = 0.5, recovery is
better for B and G but slightly worse for C̃. We conclude that the heuristic algorithm of Sect. 3.2
for fitting SCA-T3 to observed covariance matrices can accurately retrieve the underlying model
parameters.

5. Applications

Herewe apply the five SCAmodels in Table1 to benchmark datasets in the literature and show
the added value of SCA-T3. In Sect. 5.1 we apply SCA-T3 to the 20-item mood test administered
to 12 individuals diagnosed with Parkinson’s disease. This dataset was analyzed by Timmerman
and Kiers (2003) using the four existing SCA models. In Sect. 5.2 we consider a dataset of scores
on 12 tests by high school students of high and low IQ and high and low socioeconomic status,
which was also analyzed in McGaw and Jöreskog (1971). In Sect. 5.1 the SCA models are fitted
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Table 3.
Means and standard deviations of MAD and RMSE values for SCA-T3 estimates of Ãall, B, C̃, and G when generating
100 noisy datasets.

Ãall B C̃ G
K Core Data Noise MAD RMSE MAD RMSE MAD RMSE MAD RMSE

K = 5 (12) Scores sk = 0.5 0.04 0.06 0.02 0.02 0.04 0.05 0.06 0.09
(0.01) (0.01) (0.00) (0.01) (0.02) (0.03) (0.02) (0.04)

K = 5 (12) Scores sk = 0.7 0.04 0.06 0.03 0.04 0.04 0.05 0.09 0.13
(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.04) (0.04)

K = 5 (12) Scores Unequal 0.04 0.07 0.02 0.03 0.03 0.04 0.07 0.10
(0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

K = 5 (13) Scores sk = 0.5 0.03 0.04 0.03 0.04 0.01 0.01 0.04 0.05
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

K = 5 (13) Scores sk = 0.7 0.04 0.05 0.03 0.04 0.01 0.01 0.06 0.09
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

K = 5 (13) Scores Unequal 0.03 0.04 0.02 0.02 0.01 0.01 0.03 0.05
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.01)

K = 2 (13) Scores sk = 0.5 0.04 0.05 0.02 0.03 0.01 0.01 0.04 0.05
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

K = 2 (13) Scores sk = 0.7 0.05 0.06 0.04 0.06 0.01 0.01 0.07 0.09
(0.00) (0.00) (0.01) (0.02) (0.01) (0.01) (0.01) (0.02)

K = 2 (13) Scores Unequal 0.04 0.05 0.03 0.04 0.01 0.01 0.05 0.07
(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01)

K = 12 (14) Scores sk = 0.5 0.05 0.08 0.01 0.01 0.02 0.02 0.05 0.07
(0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.02) (0.03)

K = 12 (14) Scores sk = 0.7 0.06 0.08 0.01 0.02 0.02 0.03 0.07 0.09
(0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.02) (0.03)

K = 12 (14) Scores Unequal 0.05 0.07 0.01 0.01 0.01 0.02 0.06 0.07
(0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.02) (0.02)

K = 5 (12) Cov – – – 0.01 0.01 0.02 0.02 0.03 0.04
– – (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

K = 5 (13) Cov – – – 0.00 0.01 0.02 0.02 0.02 0.03
– – (0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

K = 2 (13) Cov – – – 0.01 0.01 0.03 0.03 0.03 0.04
– – (0.00) (0.00) (0.02) (0.02) (0.01) (0.01)

K = 12 (14) Cov – – – 0.00 0.01 0.02 0.02 0.03 0.04
– – (0.00) (0.00) (0.00) (0.01) (0.01) (0.02)

The SCA-T3 model is either fitted on the observed scores or fitted on the observed covariance matrices. For
observed scores the noise strength sk is given.

to the observed scoresXk , while in Sect. 5.2 the SCAmodels are fitted to the observed covariance
matrices Cov(Xk).

5.1. PANAS and Parkinson’s Disease

In Shifren, Hooker, Wood and Nesselroade (1997) 12 individuals diagnosed with Parkinson’s
disease were administered the Positive and Negative Affect Scale (PANAS; Watson, Clark &
Tellegen, 1988) on consecutive days to study their mood structure over time. The PANAS consists
of 20 items, 10 measuring positive affect and 10 measuring negative affect, scored on a 5-point
Likert scale. The 12 subjects scored the PANAS on consecutive days over a period varying from
53 to 71days. The column centered scores of subject k are collected in Xk (Nk × J ), where
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Nk is the number of days subject k scored the PANAS, and J = 20 is the number of items.
Hence, we have K = 12 matrices Xk . Values of Nk are 70, 53, 70, 69, 68, 70, 68, 69, 69, 70,
70, and 71. To study the interindividual and intraindividual differences in mood structure for
the subjects with Parkinson’s disease Timmerman and Kiers (2003) apply the four existing SCA
models. The general component structure is then given by loading matrix B, while C contains
weights indicating interindividual differences, and Ak contains the intraindividual variation for
subject k. Scaling of the columns of Xk is applied such that [XT

1 . . . XT
K ]T has column sum of

squares equal to
∑

k Nk = 817. For the four existing SCA models the PRESS and SHS values
and fit percentages are computed for one through five components. To obtain the PRESS value the
EM-CV method is used as described in Sect. 3.5, where the total number of 817× 20 = 16, 340
observations is randomly split into 150 parts (149 parts of size 109 and one part of size 99). Using
the (subjective) criteria of PRESS ≤ 12,000 and SHS≤0.10, three stable models are obtained:
SCA-INDwith R = 2 (fit 42.8%) and SCA-Pwith R = 2 (fit 43.5%) and R = 4 (fit 58.4%). After
orthogonal Procrustes rotation of the loadingmatrix of SCA-Pwith R = 2 to that of the SCA-IND
model, the two solutions are found to be very similar to the largest difference being the moderate
correlations for some subjects between the two components in the SCA-P solution (while these are
uncorrelated in SCA-IND). The two components are interpreted as Introversion and Emotional
Instability. After Varimax rotation, the solution for SCA-P with R = 4 yields a more detailed
description of the data with higher fit that also features the Emotional Instability component.
The Introversion component is split up into Arousal and Nervousness components. The fourth
component is a combination of the items “ashamed,” “excited,” and “proud.” Timmerman and
Kiers (2003) conclude that the SCA-IND solution with R = 2 is preferred for a parsimonious
description of the main features of the data, while the SCA-P solution with R = 4 yields a more
detailed picture. Interpretation of the latter solution is more difficult, however, due to moderately
correlated components for some subjects.

Next, we apply SCA-T3 to the dataset with numbers of components P ∈ {2, 3, 4}, Q ∈
{2, 3, 4}, and R ∈ {1, 2, 3, 4}. For each model we compute PRESS and SHS values and the fit
percentage. For PRESS the same procedure is used as in Timmerman and Kiers (2003) where
for each dataset with missing values SCA-T3 is run once with rationally chosen starting values.
For SHS we split the dataset 50 times in random halves and compute SCA-T3 solutions for both
halves using one run with rationally chosen starting values. The two estimates of loading matrixB
are then rotated in two ways (Sect. 3.3): using joint orthomax rotation to simple cores and loading
matrices in both solutions separately (yielding SHS1), and rotating one solution to the other by
minimizing the criterion (15) (yielding SHS2). Final values of SHS1 and SHS2 are the average of
the MAD between the two estimates of the loading matrix over the 50 replications. For all models
we obtain SHS2 < SHS1. For the fit percentage the SCA-T3 model is fitted using 49 runs with
random starting values and one run with rationally chosen starting values, where the solution with
the highest fit is kept. In Table4 the SCA-T3 models are listed with PRESS ≤ 12,000 and SHS2
≤ 0.10.

It would be unfair to use SHS2 ≤ 0.10 as stability criterion for the SCA-T3 models while
Timmerman and Kiers (2003) use 0.10 as threshold for two loading matrices that are Varimax
rotated individually. Hence, we also consider computing the SHS via Procrustes rotation of one
loading matrix to the other for SCA-ECP and SCA-P. The SCA-ECP models all have PRESS >

12,000 and only one SCA-P model (with three components) has PRESS ≤ 12,000 but SHS >

0.10. Using Procrustes rotation to compute SHS for SCA-P with three components yields SHS =
0.09, which makes this an additional stable model using this definition of SHS. Varimax rotation
of its loading matrix results in components very similar to the Emotional Stability, Arousal, and
Nervousness components found in the Varimax rotated SCA-P solution with four components.

As given in Table4 the SCA-T3 models up to (P, Q, R) = (2, 2, 4) have nearly the same fit
percentage and all have Q = 2 components for the 20 items of the PANAS. Based on the criteria
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Table 4.
PRESS and SHS values and fit of SCA-T3 models with PRESS ≤ 12,000 and SHS2 ≤ 0.10 applied to the PANAS data
for subjects with Parkinson’s disease.

(P, Q, R) PRESS SHS1 SHS2 Fit %

(2,2,2) 11814 0.11 0.09 43.2
(3,2,2) 11686 0.11 0.09 43.4
(4,2,2) 11671 0.12 0.09 43.4
(3,2,3) 11676 0.09 0.08 43.5
(4,2,3) 11664 0.09 0.08 43.5
(3,2,4) 11670 0.09 0.08 43.5
(4,2,4) 11699 0.09 0.08 43.5
(2,2,3) 11666 0.10 0.08 43.5
(2,2,4) 11670 0.09 0.08 43.5
(4,4,3) 11243 0.13 0.09 57.1
(4,4,4) 11016 0.15 0.10 58.2

of parsimony and interpretability the SCA-IND solution with two components is preferred to
these SCA-T3 models, since its fit is only slightly worse. The other two models in Table4 have
Q = 4 and higher fit percentage. Of these two models we prefer the SCA-T3 model that has
R = 3 components for the 12 subjects instead of R = 4. Below, we present the solution of
SCA-T3 with (P, Q, R) = (4, 4, 3) after joint orthomax rotation to a simple core, loading matrix
B, and weights matrix C̃. Rotating to a simple core andB yields very similar results. By taking the
best run out of m − 1 runs with random starting values (for large m) and one run with rationally
chosen starting values, we found two distinct solutions with nearly the same fit of 57.1%. The two
solutions differ mostly in two columns of B and the core array G. Below we present the solution
with the clearest structure in B.

In Table5 the loading matrix B can be found. We label the columns of B as B1, B2, B3, and
B4, respectively. Column B1 is similar to the Introversion component in Timmerman and Kiers
(2003), except that its loadings are a bit larger in magnitude. Column B2 is similar to the fourth
component in the SCA-P solution above. Column B3 can be interpreted as Perseverance, since it
combines the items “afraid” and “scared” with “determined” and “strong.” Column B4 is similar
to the Emotional Instability component of the SCA-P solution above, except that items “jittery,”
“hostile,” and “strong” are not loading on it. Columns B3 and B4 are mixed in the other solution
we found, resulting in less clear structure in B.

The subject weights matrix C is given in Table6, together with fit percentage (9) for each
subject and the sum of the variances of each Xk . As can be seen, subjects with high variability
in their scores also tend to have a high fit percentage. The interindividual differences are quite
large in terms of variability in the scores and weights in matrix C. Below, we also consider some
of the time courses in Ak . The core entries and associated explained variances (11) can be found
in Table7. After rotating, only four core entries have fit larger than 4%. Hence, although the
SCA-T3 model contains 48 combinations of columns of Ak , B, and C, joint orthomax rotation
yields a relatively simple solution in terms of interpretability. The combination of the Introversion
component B1 and weights C3 with time course A3k has explained variance 20.9%, which is the
dominant term in the solution. Introversion component B1 combined with weights C1 and time
course A1k has the second largest explained variance.

To plot the time course associated with Introversion component B1 for subject k, we compute

Ak

(∑R
r=1 ckr (Gr )(:,1)

)
, with (Gr )(:,1) denoting column 1 ofGr . In Fig. 1 these time courses are

depicted for subjects 5 and 10, which have large and small amounts of variability in their scores,
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Table 5.
Loading matrix B of the rotated solution for SCA-T3 with (P, Q, R) = (4, 4, 3) fitted to the PANAS data for subjects
with Parkinson’s disease.

Item B1 B2 B3 B4

Jittery 0.76 −0.14 0.13 0.17
Distressed 0.23 0.18 0.07 0.66
Upset 0.26 0.06 −0.03 0.68
Afraid 0.68 0.07 0.54 0.02
Scared 0.69 0.07 0.57 −0.02
Hostile 0.62 −0.16 −0.03 0.22
Irritable 0.18 0.04 −0.13 0.68
Guilty 0.08 −0.34 −0.34 0.55
Ashamed 0.56 −0.48 0.12 0.11
Nervous 0.72 −0.11 0.21 0.21
Inspired −0.66 −0.22 −0.08 0.36
Excited −0.05 −0.70 0.02 −0.18
Determined −0.28 0.00 0.56 0.03
Interested −0.75 −0.02 0.21 0.29
Enthusiastic −0.71 −0.13 0.16 0.23
Attentive −0.68 −0.14 0.26 0.26
Proud −0.05 −0.53 −0.14 −0.24
Strong −0.13 −0.26 0.58 −0.13
Active −0.64 0.09 0.39 0.08
Alert −0.73 −0.04 0.21 0.20

Absolute values larger than 0.40 are in boldfont.

Table 6.
Subjects weight matrix C of the rotated solution for SCA-T3 with (P, Q, R) = (4, 4, 3) fitted to the PANAS data for
subjects with Parkinson’s disease.

Subject C1 C2 C3 Fit % Trace(N−1
k XT

k Xk)

1 0.10 0.49 0.93 67.1 13.1
2 −0.46 1.91 0.30 66.8 38.7
3 1.09 0.20 −0.41 48.4 14.3
4 1.64 −0.47 0.88 61.0 34.5
5 −0.39 −0.55 2.39 85.7 42.3
6 0.46 0.69 0.68 57.9 15.1
7 1.04 0.63 0.21 45.0 19.1
8 0.84 0.01 −0.13 32.7 11.3
9 1.44 −0.35 −0.50 42.1 32.1
10 0.62 0.20 0.02 24.7 8.9
11 0.53 0.22 0.21 30.9 7.3
12 0.65 0.36 0.19 38.9 8.9

Also given are the fit percentages (9) and the sum of the variances of the centered and scaled data Xk .

respectively. As can be seen, the time courses mimic the variability present in the scores for these
two subjects. Similar time courses, including the change point around 15days for subject 5, are
found in the SCA-IND and SCA-P solutions in Timmerman and Kiers (2003).

To summarize, for the PANAS dataset SCA-T3 yields stable models with Q = 2 or Q = 4
components for the 20 items. This is analogous to the findings of Timmerman and Kiers (2003).
After rotating the SCA-T3 solution with (P, Q, R) = (4, 4, 3) only a few terms with large
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Table 7.
Core entries and explained variances (in round brackets) of the rotated solution for SCA-T3 with (P, Q, R) = (4, 4, 3)
fitted to the PANAS data for subjects with Parkinson’s disease.

B1 B2 B3 B4

A1k 0.51 (6.1) 0.06 (0.0) −0.03 (0.0) 0.06 (0.0) C1
A2k 0.03 (0.0) −0.00 (0.0) 0.11 (0.1) 0.81 (6.0)
A3k 0.06 (0.1) 1.00 (5.5) −0.03 (0.0) −0.16 (0.2)
A4k −0.02 (0.0) 0.07 (0.0) 0.62 (2.8) −0.01 (0.0)
A1k −0.08 (0.1) −0.21 (0.1) −0.11 (0.0) −0.09 (0.0) C2
A2k −0.39 (1.8) 0.04 (0.0) 1.00 (3.8) −0.12 (0.1)
A3k 0.15 (0.3) 0.09 (0.0) −0.76 (2.2) 0.82 (3.1)
A4k −0.11 (0.2) 0.43 (0.5) 0.08 (0.0) −0.05 (0.0)
A1k 0.01 (0.0) −0.30 (0.4) 0.16 (0.2) −0.45 (1.7) C3
A2k −0.03 (0.0) −0.20 (0.2) 0.15 (0.1) 0.09 (0.1)
A3k 1.00 (20.9) −0.00 (0.0) −0.02 (0.0) 0.05 (0.0)
A4k −0.00 (0.0) 0.10 (0.0) −0.02 (0.0) −0.18 (0.3)

Entries with explained variance larger than 4% are in boldfont.

Figure 1.
Time courses corresponding to the positive–negative affect component for subjects 5 and 10 for SCA-T3with (P, Q, R) =
(4, 4, 3) fitted to the PANAS data for subjects with Parkinson’s disease.

explained variance are obtained, which simplifies interpretation. Compared to the SCA-P solution
with four components, the SCA-T3 solution offers the following advantages. Unlike SCA-P the
components in Ak are uncorrelated in SCA-T3, which eases interpretation. Indeed, Timmerman
and Kiers (2003) state that the SCA-P solution features component covariance matrices �k ,
k = 1, . . . , 12, with small to large off-diagonal entries for different k which makes the solution
difficult to interpret. Next, unlike the existing SCA models the number of components can be
different for different modes. Hence, when four components are desired for the 20 items, the
number of components in the subjects mode may be chosen smaller. Another feature of SCA-T3
that makes interpretation easier. Time courses corresponding to specific components in B can be
plotted as for the existing SCA models. Hence, for the PANAS dataset SCA-T3 offers a more
versatile model with stable solutions that are easy to interpret. As such, it is an interesting addition
to the existing SCA models.

5.2. Ability Tests in Low and High IQ and Socioeconomic Status Groups

In McGaw and Jöreskog (1971) a large dataset of test scores by high school children is
analyzed with multi-set factor analysis using maximum likelihood. The sample of 11743 children
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is split up into K = 4 groups with low and high IQ and low and high socioeconomic status (SES).
Group sizes are N1 = 4491 (low IQ, low SES), N2 = 1336 (low IQ, high SES), N3 = 939 (high
IQ, low SES), and N4 = 4977 (high IQ, high SES). The dataset consists of rescaled correlation
matrices Sk , k = 1, 2, 3, 4, for J = 12 tests administered to all children (given in McGaw &
Jöreskog, 1971). Applying maximum likelihood factor analysis to the pooled correlation matrix
yields a nice structure in the loading matrix for four factors after Varimax rotation: Each factor
represents a distinct set of three tests. In a subsequent multi-set factor analysis for the four groups
the small entries in this Varimax rotated loading matrix are fixed at zero in the common loading
matrix. Below, we fit the five SCA models in Table1 to Sk , k = 1, 2, 3, 4, and wish to obtain a
loading matrix B with the nice structure above without having to resort to setting loadings equal
to zero. Note that we cannot compute PRESS and SHS values, since the observed scores are not
available.

For the four existing SCAmodels we use R = 4 components and fit them to Sk , k = 1, 2, 3, 4,
using the heuristic method described in Sect. 3.2. The iterative ALS algorithms for SCA-PF2,
SCA-IND, and SCA-ECP are run 49 times with random starting values and once with rationally
chosen starting values. The solution of the run with the highest fit is kept. In SCA-PF2 the solution
is scaled such that [(A1C1)

T . . . (A4C4)
T ]T has column sum of squares equal to K = 4 and

Ak has column sum of squares one (see Sect. 3.2). The scaling coefficients are then absorbed in
B. This is done analogously for the other SCA models. We call the obtained loading matrix B
separated when each test has absolute loading larger than 0.4 on exactly one factor and each factor
has loadings larger than 0.4 on a distinct set of three tests. Otherwise we call the loading matrix
mixed. For SCA-P (fit 63.5%) we obtain a separated B after Varimax rotation. The component
covariance matrices �k are roughly diagonal with largest off-diagonal entry equal to 0.14. For
SCA-PF2 (fit 63.5%) and SCA-IND (fit 63.4%) we obtain mixed loading matrices. For SCA-
ECP (fit 62.1%) we obtain a separated B after Varimax rotation and have set � = I4. Hence,
both SCA-P and SCA-ECP yield a separated B after Varimax rotation. In the SCA-P solution the
differences between the four groups boil down to differences in component variances. In SCA-
ECP the model is the same for all four groups, which makes it inappropriate to analyze group
differences. For SCA-P we also use PCA on the weighted average of Sk ; see (5). This also yields a
separatedB after Varimax rotation. Estimating�k via Penrose regression (Sect. 3.2) yields largest
off-diagonal entry equal to 0.18. This SCA-P solution is very similar to the one obtained via the
heuristic method. Next, we fit SCA-T3 and show that a solution with separated B can be obtained
that contains more information on group differences than the SCA-P solutions.

We fit SCA-T3 with (P, 4, R) components for P ∈ {1, . . . , 5} and Q ∈ {1, 2}. We use joint
orthomax rotation to a simple core and loading matrix B for Q = 1 and also to a simple weight
matrix C̃ for Q = 2. For P ≤ 3 we obtain a mixed B for both Q = 1 and Q = 2. For P ≥ 4 we
obtain a separated B for both Q = 1 and Q = 2. The fit is 62.6% for the (4, 4, 1) and (5, 4, 1)
solutions, and 63.4% for the (4, 4, 2) and (5, 4, 2) solutions. Hence, using P = 5 hardly adds
explained variance with respect to P = 4. Below, we present the (4, 4, 2) solution since it contains
more information on group differences than the (4,4,1) solution.

The loading matrix B in Table8 is clearly separated: Each component represents a distinct
group of three tests. The group weight matrix C in Table9 shows that the main difference is
between high and low IQ. Column C1 corresponds to low IQ and column C2 corresponds to high
IQ. The fit percentage per group does not differ much. The core entries and associated explained
variances in Table10 show that the solution is dominated by three terms with explained variance
larger than 10%, and three terms with explained variance around 6%. For the high IQ group
components B1 and B3 are dominant, while for the low IQ group all four components play a role
with B2 and B3 showing more variability. In general the low IQ group shows more variability in
the solution and also in the rescaled correlation matrices Sk (see Table 9).
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Table 8.
Loading matrix B of the rotated solution for SCA-T3 with (P, Q, R) = (4, 4, 2) fitted to ability tests for high school
children.

Test B1 B2 B3 B4

Vocabulary −0.12 −0.05 0.98 −0.21
Information I −0.03 −0.07 1.01 −0.13
Information II −0.07 −0.02 0.93 −0.12
Spelling −0.21 0.04 0.24 0.63
Punctuation 0.10 −0.06 0.23 0.69
English usage 0.08 −0.08 0.25 0.61
Mechanical reasoning 0.72 −0.09 0.28 −0.07
Visualization I 0.67 0.21 −0.00 0.08
Visualization II 0.80 −0.02 0.05 0.02
Table reading −0.11 0.77 0.12 −0.04
Clerical checking −0.11 0.67 0.07 0.22
Object inspection 0.14 0.77 0.07 −0.13

Absolute values larger than 0.40 are in boldfont.

Table 9.
Group weight matrixC of the rotated solution for SCA-T3 with (P, Q, R) = (4, 4, 2) fitted to ability tests for high school
children.

Group C1 C2 Fit % Trace(Sk)

Low IQ, low SES 1.16 0.25 61.7 13.4
Low IQ, high SES 1.30 −0.06 61.0 16.9
High IQ, low SES −0.03 0.97 67.9 9.9
High IQ, high SES −0.19 0.93 65.3 9.9

Also given are the fit percentages (9) and the sum of the variances for each group.

Finally, we make a detailed comparison of the SCA-T3 solution to the SCA-P solutions. We
pick the SCA-P solution that was obtained using the heuristic method in Sect. 3.2, since it does
not put weights on the Sk based on sample size Nk (and neither do the other SCA methods used
above). The SCA-P solution obtained from PCA on the weighted average of Sk is very similar,
however. The loading matrix B in the SCA-P solution is separated and very similar to B in the
SCA-T3 solution in Table8. In Table11 the variance of the components in the SCA-P solution
(diagonals of�k) is given for the corresponding columns ofB in the SCA-T3 solution. Also given
are the explained variances of each component in each sample, if it were the only component.
These are computed as 100 · trace(br (�k)rr bTr )/trace(Sk); see the end of Sect. 3.4. It is important
to note that these explained variances should be interpreted with care, since they only add up to
the explained variance per group when the components are orthogonal (which is not true for the
SCA-P solution). The component variances should also be interpreted with care, since they cannot
be related unambiguously to explained variances. Hence, a first observation in the comparison
between the SCA-P and SCA-T3 solutions is that interpretation of the explained variances due to
each term is much easier in the SCA-T3 solution; see Table10 in which the explained variances
add up to the total explained variance. Ignoring these ambiguities and comparing the SCA-P and
SCA-T3 solutions, we observe the following. SCA-T3 summarizes the four groups into two group
components, corresponding to low and high IQ (Table9), and indicates the strength of the test
components in B for the two group components in the core array G (Table10). In the SCA-P
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Table 10.
Core entries and explained variances (in round brackets) of the rotated solution for SCA-T3 with (P, Q, R) = (4, 4, 2)
fitted to ability tests for high school children.

B1 B2 B3 B4

A1k 0.13 (0.2) 0.10 (0.1) 0.83 (13.1) 0.16 (0.2) C1
A2k 0.00 (0.0) −0.02 (0.0) −0.06 (0.1) −0.82 (5.7)
A3k 0.09 (0.1) 1.00 (10.5) −0.04 (0.0) 0.04 (0.0)
A4k 0.80 (6.8) 0.05 (0.0) 0.07 (0.1) −0.00 (0.0)
A1k −0.17 (0.2) −0.54 (1.8) −0.15 (0.3) 0.38 (0.8) C2
A2k 1.00 (6.4) 0.11 (0.1) 0.04 (0.0) −0.02 (0.0)
A3k 0.11 (0.1) −0.01 (0.0) 0.98 (11.2) 0.43 (1.0)
A4k 0.00 (0.0) 0.42 (1.1) 0.05 (0.0) 0.82 (3.5)

Entries with explained variance larger than 4% are in boldfont.

Table 11.
Component variances and explained variance (in round brackets) due to each component in each group, if it were the only
component, for the SCA-P solution fitted to ability tests for high school children.

Group B1 B2 B3 B4

Low IQ, low SES 0.95 (12.9) 1.34 (17.3) 0.83 (16.7) 1.05 (13.2)
Low IQ, high SES 1.12 (12.2) 1.76 (18.0) 1.32 (21.1) 1.19 (11.9)
High IQ, low SES 0.98 (18.2) 0.44 (7.7) 0.97 (26.5) 0.86 (14.7)
High IQ, high SES 0.94 (17.4) 0.46 (8.0) 0.88 (24.1) 0.90 (15.3)

solution this information should be gathered from one table of explained variances (Table11),
which is less clear for the practitioner. The SCA-P and SCA-T3 solutions both yield B2 and B3 as
strongest components for the low IQ groups, and B1 and B3 as strongest for the high IQ groups.
However, the differences in explained variance are more pronounced in the SCA-T3 solution.
Also, there is considerable variation among the two low IQ groups in the SCA-P solution, which
is summarized more clearly in the group components of the SCA-T3 solution. We conclude that
the SCA-T3 solution offers a clearer picture of group differences than the SCA-P solution.

6. Discussion

We have introduced a new model for simultaneous component analysis based on the Tucker3
model for component analysis of three-way arrays. The new SCA-T3model is more versatile than
existing SCA models, since for each mode a different number of components can be chosen. The
solution can be rotated to obtain simple structure in the loading matrix, core array, and the weight
matrix for the samples. An optimal solution always exists for SCA-T3, and hence, problems of
diverging solutions donot occur.Wehavederived anALSalgorithm for fittingSCA-T3 to observed
scores, and a heuristic method to fit SCA-T3 to observed covariance matrices. In the simulation
study the algorithms are successful in recovering underlying components for generated scores data
with added noise and for data generated from population covariance matrices. The application to
the PANAS data for subjects with Parkinson’s disease shows that SCA-T3 offers stable models
that are easy to interpret after rotation of the solution. Moreover, compared to the SCA-P solution
with four components [recommended in Timmerman and Kiers (2003)] the SCA-T3 solution
is easier to interpret due to the components Ak being uncorrelated. In the SCA-P solution the
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component covariance matrices �k feature small and large off-diagonal entries for different k.
The application to the observed covariance matrices of ability tests for high school children shows
that rotating the solution to simple structure is a key feature in obtaining an appropriate loading
matrix. The SCA-PF2 and SCA-IND do not yield a simple loading structure for this dataset.
The SCA-ECP solution does, but differences between groups cannot be taken into account in
its covariance form. A comparison of the SCA-P and SCA-T3 solutions yields that although the
SCA-P solution features roughly diagonal �k , determining the strength of item components in
each group k is problematic when considering either component variance or explained variance
due to each component. In the SCA-T3 solution the explained variance due to each term adds
up to total explained variance.Moreover, the strength of item components for each group is broken
down into two levels: the group components and the explained variance of item components for
the group components. This offers a clearer picture of group differences than the SCA-P solution.
In sum, we conclude that SCA-T3 is a valuable addition to the existing SCA models.

The SCA-ECP and SCA-P models also have clusterwise variants in which each Xk is
assigned to a cluster c with its own loading matrix Bc. In clusterwise SCA-ECP the model is
Xk ≈ Fk BT

c with N−1
k FT

k Fk = �, when k is assigned to cluster c (De Roover, Ceulemans, Tim-
merman, Vansteelandt, Stouten & Onghena, 2012; De Roover, Ceulemans, Timmerman, Nezlek
&Onghena, 2013a). Clusterwise SCA-P is the same model without restrictions on the component
covariance matrices N−1

k FT
k Fk (De Roover, Ceulemans, Timmerman & Onghena, 2013b). For-

mally, these clusterwise SCA models are special cases of SCA-T3. For example, when there are
two clusters we set B = [B1 B2], R = 2, G1 = [G11 O], G2 = [O G22], and ckr = 0 if k is not
in cluster r . This yields the model Xk ≈ Ak (ckc Gcc)BT

c when k is in cluster c. In applications
SCA-T3 could perhaps be used to checkwhether clusterwise SCAwould be an appropriate model.
For example, in the SCA-T3 solution for the ability tests dataset we observed a clear difference
in component structure between the low and high IQ groups, resulting in group weights matrix C
with roughly the form as above. When the low IQ groups would have large explained variances
only for B1 and B2 and the high IQ groups only for B3 and B4, this would be an indication that a
clusterwise SCA model may be useful. However, more research is needed to study the usefulness
of SCA-T3 in such cases.

The SCA-PF2 and SCA-INDmodels have been extended tomulti-set factormodels by adding
a diagonal matrix of unique variances to the corresponding SCA model for observed covariance
matrices (Stegeman & Lam, 2016). The unique variances are estimated via minimum rank factor
analysis (Ten Berge & Kiers, 1991), after which they are subtracted from the observed covariance
matrices and the SCA model is fitted to the result. Obviously, this extension is also possible for
SCA-T3 and would yield a multi-set factor model in which the model for the common parts can be
rotated to obtain an interpretable solution. As such, thesemulti-set factor models are an alternative
to the maximum likelihood approach introduced by Jöreskog (1971).
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Appendix: Proofs of Lemma 3.1 and Lemma 3.2

Proof of Lemma 3.1. We start by proving equality (9) for SCA-P fitted via PCA as described at
the beginning of Sect. 3.2. From the latter it can be verified that Fk = Xk B (BTB)−1. This implies
that

‖Xk − Fk BT ‖2 = trace(XT
k Xk) − trace(B (BTB)−1BTXT

k Xk)

= trace(XT
k Xk) − trace(B (BTB)−1BTXT

k XkB (BTB)−1BT )

= ‖Xk‖2 − ‖Fk BT ‖2,

which is equivalent to (9).
Next, we consider SCA-PF2. It suffices to show that trace(XT

k Fk BT ) = trace(BFT
k Fk BT ). In

SCA-PF2 we can set Fk = Ãk H C̃k , with ÃT
k Ãk = IR , HTH = �̃, and C̃k diagonal R × R

(Kiers et al., 1999; Timmerman & Kiers, 2003). In step 2 of the ALS algorithm for SCA-PF2 the
objective function is minimized overH, C̃k , and B for fixed Ãk . Analogous to Sect. 3.1, this boils
down to fitting Parafac to the R × J × K array with slices ÃT

k Xk , k = 1, . . . , K . One iteration of
the Parafac ALS algorithm is used to approximate ÃT

k Xk ≈ H C̃k BT . Vectorizing on both sides

yields Vec(ÃT
k Xk) ≈ (B � H) c̃(row)

k , with c̃(row)
k denoting the kth row of C̃ as a column vector.

The OLS regression update of c̃(row)
k for fixed H and B implies that

trace(Vec(ÃT
k Xk)

T (B � H) c̃(row)
k ) = trace((c̃(row)

k )T (B � H)T (B � H) c̃(row)
k ),

which is equivalent to trace(XT
k Ãk H C̃k BT ) = ‖Ãk H C̃k BT ‖2. This is the desired result. The

proof for SCA-IND follows from the above by setting �̃ = IR (Timmerman & Kiers, 2003).
Finally, we consider SCA-T3 fitted by the ALS algorithm in Sect. 3.1. The proof is analogous to
the proof for SCA-PF2. We write Fk = Ãk

(∑
r c̃kr Gr

)
, with ÃT

k Ãk = IP . In step 2 of the ALS
algorithm in Sect. 3.1 we fit Tucker2 to the P × J × K array with slices ÃT

k Xk , k = 1, . . . , K .
One iteration of the Tucker2 ALS algorithm is used to approximate ÃT

k Xk ≈ (∑
r c̃kr Gr

)
BT .

Vectorizing on both sides yields Vec(ÃT
k Xk) ≈ (B ⊗ IP ) [Vec(G1) . . . Vec(GR)] c̃(row)

k . As

above, the OLS regression update of c̃(row)
k for fixed B and G yields the result. This completes the

proof. 	


Generally, the equality in (9) follows from an OLS regression update specifically for sample k.
For SCA-ECP there is no such update and the equality does not hold. Indeed, fitting SCA-ECP
to the PANAS dataset in Sect. 5.1 yields inequality in (9).

Proof of Lemma 3.2. After step 2 of the ALS algorithm for SCA-T3 (Sect. 3.1) the fitted model
for Xk can be written as Ãk G (c̃(row)

k ⊗ BT ), with G = [G1 . . . GR] and c̃(row)
k the kth row of C̃

as a column vector. Analogous to (4) for Tucker3 (Sect. 2.1), we obtain

Vec(Xall) ≈
⎡

⎢
⎣

(c̃(row)
1 )T ⊗ B ⊗ Ã1

...

(c̃(row)
K )T ⊗ B ⊗ ÃK

⎤

⎥
⎦Vec(G). (18)
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The matrix on the right-hand side is columnwise orthonormal, since

K∑

k=1

((c̃(row)
k )T ⊗ B ⊗ Ãk)

T ((c̃(row)
k )T ⊗ B ⊗ Ãk) =

K∑

k=1

(c̃(row)
k (c̃(row)

k )T ⊗ BTB ⊗ ÃT
k Ãk)

=
(

K∑

k=1

c̃(row)
k (c̃(row)

k )T

)

⊗ IQ ⊗ IP

= C̃T C̃ ⊗ IQ ⊗ IP
= IR ⊗ IQ ⊗ IP = IPQR . (19)

The update of G in step 2 of the ALS algorithm for SCA-T3 in Sect. 3.1 is computed via OLS
regression in (18). Indeed, this is identical to the update of G in the ALS algorithm for Tucker2
fitted to the P × J × K array with slices ÃT

k Xk , k = 1, . . . , K . After convergence of the ALS

algorithm for SCA-T3 we set Ak = N 1/2
k Ãk and c(row)

k = N−1/2
k c̃(row)

k , k = 1, . . . , K . For the

blocks of the matrix in (18), we have (c(row)
k )T ⊗B⊗Ak = (c̃(row)

k )T ⊗B⊗Ãk . Since the update of
G in (19) is done via OLS regression with orthonormal predictors, it follows that for SCA-T3 we
can compute the fit percentage due to term (p, q, r) as in (11). Moreover, these terms sum up to
the total fit percentage (8). This is analogous to Tucker3 (Sect. 2.1). This completes the proof. 	
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